Search results

Search for "surface strain" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • . We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning
  • ][7]. We recently introduced such a sensor based on the electromechanical coupling between surface strain and kinetic inductance of a superconducting nanowire [8]. In this paper, we describe in detail the fabrication and characterization methods of these kinetic inductive mechano-electric coupling
  • also requires decreasing meff to maintain k. Practically, the limits of ωm and meff are set by material choices, fabrication possibilities, and cantilever dimensions. These factors also affect the surface strain at the base of the cantilever where the nanowire is located. Second in the hierarchy are
PDF
Album
Full Research Paper
Published 15 Feb 2024

Vibration analysis and pull-in instability behavior in a multiwalled piezoelectric nanosensor with fluid flow conveyance

  • Sayyid H. Hashemi Kachapi

Beilstein J. Nanotechnol. 2020, 11, 1072–1081, doi:10.3762/bjnano.11.92

Graphical Abstract
  • piezoelectric doubly curved nanoshells and orthotropic piezoelectric cylindrical nanoshells [23][24]. Wang utilized surface strain gradient elasticity to study a meticulous solution to the anti-plane shear problem of a circular elastic inhomogeneity [25]. Nami et al. utilized nonlocal elasticity theory and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • the capacity degradation of the samples [23]. Electrochemical strain microscopy (ESM) is a relatively new AFM contact mode, which probes ionic charges accumulated in a small volume under the AFM tip after application of an electric field by measuring the resulting surface strain [24][25][26]. It was
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • resistances are in accordance with the modeled resistances. The change in resistance for an upwardly bent strain gauge is caused by the compressing surface strain of the curled-up cantilever. To fulfil the condition that the volume of the strain gauge is constant even under compression, an increase of the
PDF
Album
Full Research Paper
Published 03 Jan 2019

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • , these results are only valid for γ ≥ 0. To demonstrate the insignificant role of the specific surface strain energy on the surface energy, the insert in Figure 5 displays the particle size dependence of this quantity. Although its contribution increases drastically with decreasing particle size, its
PDF
Album
Review
Published 23 Aug 2018

Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

  • Mostafa Mirzaei and
  • Yaser Kiani

Beilstein J. Nanotechnol. 2016, 7, 511–523, doi:10.3762/bjnano.7.45

Graphical Abstract
  • the strain–displacement relations results in the components of strain on an arbitrary point of the plate in terms of mid-surface strain components and change in curvature as The strain field on the midsurface of the plate may be obtained according to the midsurface displacements as and the change of
PDF
Album
Full Research Paper
Published 07 Apr 2016

Strain distribution due to surface domains: a self-consistent approach with respect to surface elasticity

  • Javier Fuhr and
  • Pierre Müller

Beilstein J. Nanotechnol. 2015, 6, 321–326, doi:10.3762/bjnano.6.30

Graphical Abstract
  • integral equation that contains surface elastic constants, Sij. For surfaces with positive Sij the new approach avoids the introduction of a cut-off length. The classical and the new approaches are compared in case of 1-D periodic ribbons. Keywords: surface strain; surface elasticity; strain field
PDF
Album
Full Research Paper
Published 29 Jan 2015

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • to a larger curvature increasing the degree of surface strain. Another example for the functionalization of CNOs in a highly reactive environment was published by Khabashesku et al., who directly fluorinated CNOs under a stream of F2 and H2 [28]. CNO fluorination was carried out in a custom-built
PDF
Album
Review
Published 04 Nov 2014
Other Beilstein-Institut Open Science Activities